
Machine Learning for Track Reconstruction at the LHC

Louis-Guillaume Gagnon

AI4EIC-Exp Workshop
2021/09/08

1 / 20



Introduction: Particle Trajectory Reconstruction

I Particle trajectory reconstruction (Tracking) is
a clustering problem

I Given a set of points in 3D space (Hits),
cluster in sets which originate from the same
particles
I Hits correspond to signals from

subdetetectors
I Today, focus on silicon tracking detectors at

p–p colliders

I The small number of hits in a typical
reconstructed track compared to the total
number of hits in an event makes the problem
particularly challenging

I Most experiments in LHC setting use
variations of the Kalman Filter (KF) algorithm
to find and fit tracks

I ,Physics performance is excellent

I /Runtime scales badly with Nhits
[1904.06778]

2 / 20

https://arxiv.org/abs/1904.06778


Introduction: Towards the High-Luminosity LHC (HL-LHC)

I HL-LHC: Circa 2027, pileup increase to ≈ 200
I ATLAS Run-2 had ≈ 30

I KF-based methods runtime is & O(N2
hits)

I Combinatorial explosion → runtime explosion

I Also: trigger rate increase, more readout
channels . . .

I Current budget prediction do not cover CPU
needs of current methods

I Need “Aggressive R&D”: New and/or
improved methods

I More details in ATLAS computing CDR
3 / 20

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf


Introduction: Roadmap

I Where does Machine Learning (ML) fits into this problem?

I Kalman Filter is currently still by far the best method available

I Approach 1: Make the KF methods faster

I Approach 2: Keep the current KF-based methods and use ML to control the combinatorics

I Approach 3: Replace the KF altogether with more sophisticated ML
(so-called “end-to-end” methods)

4 / 20



Approach 1: Accelerated Kalman Filter



Trigger-level track finding on GPU with ALICE

I Track finding in the ALICE TPC at software trigger level has been ported to GPUs
I Tracklet finding with cellular automaton
I Track finding & fitting with simplified Kalman Filter

I One of the earliest successful use of GPU for tracking in a realistic setting!

I Total speedup for GPU is 56x!
I Connecting the dots 2020 paper

6 / 20

https://indico.cern.ch/event/831165/papers/3717100/files/9885-ctd2020.pdf


Kalman Filtering on the GPU

I The KF algorithm is fully expressible with linear algebra
I However, peculiarities of the algorithm makes it a challenge to efficiently code it on a GPU (e.g.

with CUDA)
I E.g. Matrix sizes are typically very small

I Ai et al, [2105.01796], explored two strategies
I Fitting many tracks in parallel (using CUDA threads or blocks)
I Additionally parallelizing single-track fits (Using CUDA threads)

I Scaling remains the same, but GPU
implementation is faster for large datasets

I Intra-track parallelization is mainly good for
smaller datasets

7 / 20

http://arxiv.org/abs/2105.01796


Approach 2: Strategic Use of Machine Learning



The TrackML challenge

I TrackML: Machine Learning competition
aiming to encourage development of fast and
high performance tracking methods by
leveraging ML expertise

I Split into two different stages:
I Accuracy phase: Hosted on Kaggle, aimed to

attain maximum physics performance
I Throughput phase: Hosted on Codalab,

aimed to attain maximum inference speed

I Main insight: Most winning methods leverage
“classical” track reconstruction techniques,
using ML at strategic points to control
combinatorics and increase performance

I Accuracy phase:
I Kaggle webpage
I Summary paper: [1904.06778]

I Throughput phase:
I Codalab webpage
I Summary paper: [2105.01160]

9 / 20

https://www.kaggle.com/c/trackml-particle-identification/overview
http://arxiv.org/abs/1904.06778
https://competitions.codalab.org/competitions/20112
http://arxiv.org/abs/2105.01160


TrackML Accuracy Phase Winner: ”Top-Quarks”

I Modular algorithm, similar to “typical”
combinatorial KF pipelines (e.g. ATLAS):

1. Seeding: create pairs of seed with a pairwise
logistic regression model, using 50 different
layer pairings as input

2. Triplet formation: Extend the resulting
doublets to triplets and filter them with
another logistic regression model

3. Track following: Build tracks by helical
extrapolation

4. Ambiguity resolution: Simple cut on number
of wrongly associated hits (estimated from a
fit to data)

I Logistic regression is leveraged to control the
combinatorics

I Dedicated data structures were developed to
allow an efficient implementation I [1904.06778]

I Code Repository:
github.com/top-quarks/top-quarks

10 / 20

http://arxiv.org/abs/1904.06778
https://github.com/top-quarks/top-quarks


TrackML Throughput Phase Winner: “Mikado”

I Implemented by Sergey Gorbunov (Runner-up in accuracy phase)
I Iterative track finding algorithm with 60 passes

I Earlier passes are very strict → high purity, low efficiency
I Later passes are progressively looser → combinatorics kept under control by earlier passes

I Hits on every layer are quantized to a 2D grid
I Tracklets are built by looking through layer- and pass-specific search windows
I O(104) parameters used to define fixed-size search windows
I Parameters tuned with a fit to data

[2105.01160]
11 / 20

http://arxiv.org/abs/2105.01160


Approximate Nearest Neighbor Search

I Define a metric space (e.g. angular distance)

I Segment it in different regions, in O(logNhits)

I Quickly lookup union of regions being
approximately closest to a query point

source

12 / 20



Approximate Nearest Neighbor Search

I Different approach to track reconstruction, by
Amrouche et al

I Divide-and-conquer approach used to control
combinatorics

I Use “Approximate nearest neighbor”
algorithms separate all hits in different regions

I Tracking can then be performed separately in
each region

I O(N2
hits) nature of tracking means that this

scales better than the global approach
I Need to define a meaningful distance between

hits
I Can be as simple as the angular distance

between hits. . .
I . . . or as complex as a

learned embedding via neural network

I [2101.06428]

I IEEE article

I Blog post by Sabrina Amrouche

13 / 20

https://indico.cern.ch/event/831165/contributions/3717131/attachments/2024255/3385642/choma_ctd2020.pdf
https://arxiv.org/abs/2101.06428
https://doi.org/10.1109/BigData47090.2019.9006316
https://itnext.io/using-the-spotify-algorithm-to-find-high-energy-physics-particles-1c28f5f37650


Approach 3: End-to-end Machine Learning
Algorithms



Graph Neural Networks

I Graph Neural Networks (GNNs):
I Cast dataset as a set of nodes connect by

edges
I Both nodes and edges can have associated

values and labels
I GNN will do node and/or edge classification

I In context of track reconstruction:
I Nodes are naturally hits in a detector layer
I Edges connect hits together. “True” edge →

hits from a same particle

I The edge classification task is leveraged to
cluster hits into sets that are truly connected

I Example: Edge classification of San Francisco
Bay Area transit network stations

I source

15 / 20

https://drive.google.com/file/d/11NDxKukSEMRctrWFu3DV-UJHUJtrnsXs/view


Graph Neural Networks: the Exa.TrkX Pipeline

I Exa.TrkX is a DOE project aims to leverage
GNNs to form a complete track reconstruction
pipeline at the exascale

I Multi-stage algorithm that can be used for
seed formation or complete track
reconstruction

I Core GNN model is “Interaction Network”
[1612.00222]

I Project also aims to support parallelized
deployment on accelerated hardware such as
GPUs and FPGAs

I Project webpage: exatrkx.github.io

I Performance paper: [2103.06995]

I Code repository: github.com/exatrkx

16 / 20

https://arxiv.org/abs/1612.00222
https://exatrkx.github.io/
https://arxiv.org/abs/2103.06995
https://github.com/exatrkx


Graph Neural Networks: the Exa.TrkX Pipeline

[2103.06995]

1. Construct a metric space in which distance between hits correlates with track membership
→ defines edges

2. Train an neural network to filter these edges to increase purity and make graph sparser

3. Core step: Use a GNN (interaction network) to classify edges

4. Post-processing, depending on the goal:
I Seeding: Using the resulting doublet graph, build triplets using likelihood methodx
I Track reconstruction: Partition the graph into connected components

17 / 20

https://arxiv.org/abs/2103.06995


Graph Neural Networks: the Exa.TrkX Pipeline

I Performance adequate for proof-of-concept I Good runtime scaling, albeit on a simplified
dataset (TrackML)

[2103.06995]

18 / 20

https://arxiv.org/abs/2103.06995


ACTS: A Common Tracking Software project

I Experiment-independent toolkit for tracking

I Free software (Mozilla Public License v2.0)

I Considered for use by Belle II, CEPC,
sPHENIX, PANDA, FASER, ATLAS, EIC, . . .

I Three overarching goals:
1. Preserve current tracking approaches while

enabling development for HL-LHC
2. Serve as an algorithmic test bed incl.

ML-based algorithms and accelerated
hardware

3. Enable rapid and realistic development of
new tracking detectors

I Includes an ONNX plugin, to enable import of
various ML models anywhere in the tracking
workflow

I Ongoing R&D for GPU tracking (traccc)

I Overview paper: [2106.13593]

I Project webpage: acts.readthedocs.io

I Code repository: github.com/acts-project/acts

19 / 20

https://onnx.ai/
https://github.com/acts-project/traccc
https://arxiv.org/abs/2106.13593
https://acts.readthedocs.io
https://github.com/acts-project/acts/


Conclusion

I Today: Only presented a small fraction of the total landscape of ML use in track reconstruction
I Using accelerated hardware to speed-up current KF-based algorithms
I Using ML at strategic points in track reconstruction algorithms
I Using ML at all stages to build an end-to-end pipeline

I My personal takeaways:
I The Kalman Filter remains too powerful to completely throw away
I ML techiques are extremely useful to avoid the dreaded combinatorial explosion
I Many techniques, from logistic regression to graph neural networks, are promising
I An optimal tracking pipeline should be very modular in design
I Accelerated implementations could help bridge the remaining performance gap

I Eager to learn about more cutting edge methods?
I The accuracy and throughput trackML papers are highly recommended
I The Living Review of Machine Learning for Particle Physics contains a “Tracking” section

20 / 20

http://arxiv.org/abs/1904.06778
http://arxiv.org/abs/2105.01160
https://github.com/iml-wg/HEPML-LivingReview


BACKUP SLIDES



Parallelized track finding on CPU with CMS: Matriplex

I Most recent CPUs have broad support for vectorized math operations

I Matriplex: Memory layout for efficient use of vector units to perform small matrix operations

I From Connecting the dots 2019 talk

2 / 5

https://indico.cern.ch/event/742793/contributions/3298693/attachments/1823661/2983763/MkFit-CTD2019-Hall.pdf


Parallelized track finding on CPU with CMS: mkfit

I Matriplex + threading leveraged in the CMS mkfit framework for parallel track reconstruction
I github.com/trackreco/mkFit

I Good speedup seen for single events

I Up to 25x with event batching
3 / 5

Code repository: https://github.com/trackreco/mkFit


Approximate Nearest Neighbor Search

I Using dedicated learned metric space increases
the bucket quality

plots from IEEE article

4 / 5

https://doi.org/10.1109/BigData47090.2019.9006316


Example of ML R&D in ACTS: Ambiguity resolution

I Ambiguity resolution: Given a set of tracks, reject duplicate and fake tracks and keep only tracks
corresponding to a real particle

I Using the ACTS framework, a dataset comprising real and fake tracks is easily obtained
I Regular NN and/or Recurrent NN can be integrated in ACTS with ONNX

I Earlier work by Irina Ene, grad student at UCB

I slides

I Extension to LSTM, using information about
hits shared by many tracks

I Work by Nupur Oza, IRIS-HEP fellow

5 / 5

https://indico.cern.ch/event/945364/contributions/3972551/attachments/2095760/3522537/IrinaEne-IRIS-HEP_topical_meeting_090220.pdf

	Appendix

